Oil Palm Shell Ash - Cement Mortar Mixture and Modification of Mechanical Properties

ثبت نشده
چکیده

The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of 7 days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated. Keyword—Minerals, additive, flexural strength, compressive strength, modulus of elasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Use of Palm Kernel Shell and Ash for Concrete Production

Abstract—This work reports the potential of using Palm Kernel (PK) ash and shell as a partial substitute for Portland Cement (PC) and coarse aggregate in the development of mortar and concrete. PK ash and shell are agro-waste materials from palm oil mills, the disposal of PK ash and shell is an environmental problem of concern. The PK ash has pozzolanic properties that enables it as a partial r...

متن کامل

Use of disposed waste ash from landfills to replace Portland cement.

In this study, waste ash was utilized as a pozzolanic material in blended Portland cement in order to reduce negative environmental effects and landfill volume required to dispose of waste ash. The influence of waste ash, namely palm oil fuel ash, rice husk ash and fly ash on compressive strength and sulfate resistance in mortar were studied and evaluated by some accelerated short-term techniqu...

متن کامل

Effect of Temperature of Exposure on Properties of Cement Mortar with MSWI Bottom Ash

Effect of high temperature exposure on properties of cement mortar containing municipal solid waste incineration (MSWI) bottom ash as partial natural aggregate replacement is analyzed in the paper. The measurements of mechanical properties, bulk density, matrix density, total open porosity, sorption and desorption isotherms are done on samples exposed to the temperatures of 20°C to 1000°C. TGA ...

متن کامل

On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement

Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash) as an alkali activated binder (AAB) that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1....

متن کامل

Palm kernel fruit fiber reinforced gypsum-cement based wall panels: It’s physical and mechanical characteristics

Agricultural waste fibers have been found to be suitable as reinforcement in cement-based composites, but studies on oil palm fiber as reinforcement in gypsum-cement wall panels are scarce. A mixture of two equal weights of gypsum and cement, with water-binder ratios of 0.45 and 0.55 were prepared. In each mix a varying percentage of fiber contents of 2%, 3% and 4% by weight of the binders were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014